12,999 research outputs found

    Generation of twist on magnetic flux tubes at the base of the solar convection zone

    Full text link
    Using two-dimensional magnetohydrodynamics calculations, we investigate a twist gen- eration mechanism on a magnetic flux tube at the base of the solar convection zone based on the idea of Choudhuri, 2003, Sol. Phys., 215, 31 in which a toroidal mag- netic field is wrapped by a surrounding mean poloidal field. During generation of the twist, the flux tube follows four phases. (1) It quickly splits into two parts with vortex motions rolling up the poloidal magnetic field. (2) Owing to the physical mechanism similar to that of the magneto-rotational instability, the rolled-up poloidal field is bent and amplified. (3) The magnetic tension of the disturbed poloidal magnetic field re- duces the vorticity, and the lifting force caused by vortical motion decreases. (4) The flux tube gets twisted and begins to rise again without splitting. Investigation of these processes is significant because it shows that a flux tube without any initial twist can rise to the surface in relatively weak poloidal fields.Comment: 10 pages, 6 figur

    Fine strand-like structure in the solar corona from MHD transverse oscillations

    Full text link
    Current analytical and numerical modelling suggest the existence of ubiquitous thin current sheets in the corona that could explain the observed heating requirements. On the other hand, new high resolution observations of the corona indicate that its magnetic field may tend to organise itself in fine strand-like structures of few hundred kilometres widths. The link between small structure in models and the observed widths of strand-like structure several orders of magnitude larger is still not clear. A popular theoretical scenario is the nanoflare model, in which each strand is the product of an ensemble of heating events. Here, we suggest an alternative mechanism for strand generation. Through forward modelling of 3D MHD simulations we show that small amplitude transverse MHD waves can lead in a few periods time to strand-like structure in loops in EUV intensity images. Our model is based on previous numerical work showing that transverse MHD oscillations can lead to Kelvin-Helmholtz instabilities that deform the cross-sectional area of loops. While previous work has focused on large amplitude oscillations, here we show that the instability can occur even for low wave amplitudes for long and thin loops, matching those presently observed in the corona. We show that the vortices generated from the instability are velocity sheared regions with enhanced emissivity hosting current sheets. Strands result as a complex combination of the vortices and the line-of-sight angle, last for timescales of a period and can be observed for spatial resolutions of a tenth of loop radius.Comment: Accepted for publication in ApJ

    Recording Leaf Movements with a Strain Gauge

    Get PDF
    Lightweight strain gauge sensing unit for recording circadian leaf movements in space environmen
    corecore